SMOOTH MANIFOLDS FALL 2022 - HOMEWORK 7

Problem 1. Let G be a connected Lie group, and \mathfrak{h} be an ideal of $\operatorname{Lie}(G)$.
(a) Show that there is a well defined action $\overline{\mathrm{Ad}}: G \rightarrow G L(\operatorname{Lie}(G) / \mathfrak{h})$ defined by

$$
\overline{\operatorname{Ad}}(g)(X+\mathfrak{h})=\operatorname{Ad}(g) X+\mathfrak{h} .
$$

(b) Show that if $g=\exp (X)$ is sufficiently close to $e \in G, g \in \operatorname{ker} \overline{\mathrm{Ad}}$ if and only if the image of $\operatorname{ad}(X)$ is contained in \mathfrak{h}.
(c) Give an example of a Lie group and proper ideal for which Ad is faithful but $\overline{\mathrm{Ad}}$ is trivial.

Solutions.
(a) To see that $\overline{\operatorname{Ad}}(g)$ is well-defined, we must show that if $Y^{\prime} \in Y+\mathfrak{h}$, then $\operatorname{Ad}(g) Y^{\prime} \in \operatorname{Ad}(g) Y+\mathfrak{h}$. Since $\operatorname{Ad}(g)$ is linear, it suffices to show that $\operatorname{Ad}(g) \mathfrak{h} \subset \mathfrak{h}$ for every $g \in G$. Since G is connected, every $g \in G$ can be written as a finite product of elements of the form $\exp (X)$ for $X \in \operatorname{Lie}(G)$. Notice also that

$$
\operatorname{Ad}\left(\exp \left(X_{1}\right) \exp \left(X_{2}\right) \ldots \exp \left(X_{n}\right)\right)=\operatorname{Ad}\left(\exp \left(X_{1}\right)\right) \operatorname{Ad}\left(\exp \left(X_{2}\right)\right) \ldots \operatorname{Ad}\left(\exp \left(X_{n}\right)\right)
$$

Therefore, it suffices to show that for every $X \in \operatorname{Lie}(G), \operatorname{Ad}(\exp (X)) \mathfrak{h} \subset \mathfrak{h}$. Finally, since $\operatorname{Ad}(\exp (X))=\exp (\operatorname{ad}(X))$, and $\operatorname{ad}(X)$ preserves \mathfrak{h}, the claim follows.
(b) First, assume that $\operatorname{ad}(X) \operatorname{Lie}(G) \subset \mathfrak{h}$. Then

$$
\operatorname{Ad}(g) Y=\exp (\operatorname{ad}(X)) Y=Y+\operatorname{ad}(X) Y+\frac{1}{2} \operatorname{ad}(X)^{2} Y+\ldots
$$

By asusmption, all terms except the first one belong to \mathfrak{h}. Hence $\operatorname{Ad}(g) Y \in Y+\mathfrak{Y}$ for all $Y \in \operatorname{Lie}(G)$. Hence $\overline{\operatorname{Ad}}(g)=\mathrm{Id}$, and $g \in \operatorname{ker} \overline{\operatorname{Ad}}$. Conversely, observe that since $\overline{\operatorname{Ad}}$ is a continuous homomorphism, ker $\overline{\mathrm{Ad}}$ is a closed subgroup of G. Therefore, it is a closed Lie subgroup, and there exists a neighborhood of $e \in G$ such that if $g \in \operatorname{ker} \overline{\mathrm{Ad}}$, then $g=\exp (X)$ for some $X \in \operatorname{Lie}(G)$, and $g_{t}=\exp (t X)$ belongs to ker $\overline{\mathrm{Ad}}$ for all $t \in(-1,1)$. Since $\overline{\mathrm{Ad}}(\exp (t X))=$ $\operatorname{Id}_{\operatorname{Lie}(G) / \mathfrak{h}}$ for all $t \in(-1,1), \operatorname{Ad}(\exp (t X)) Y \in Y+\mathfrak{h}$. Hence,

$$
\operatorname{ad}(X) Y=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}(\exp (t X)) Y=\lim _{t \rightarrow 0} \frac{1}{t}(\operatorname{Ad}(\exp (t X)) Y-Y) \in \mathfrak{h}
$$

Since $X \in \operatorname{Lie}(\operatorname{ker} \overline{\mathrm{Ad}})$ and $Y \in \operatorname{Lie}(G)$ were arbitrary, we have finished the proof.
(c) Let $G=\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right): a>0, b \in \mathbb{R}\right\}$, so that $\operatorname{Lie}(G)=\left\{\left(\begin{array}{cc}s & t \\ 0 & 0\end{array}\right): s, t \in \mathbb{R}\right\}=\operatorname{span}\{X, Y\}$, where $X=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $Y=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. It follows that $[X, Y]=Y$. Let $\mathfrak{h}=\mathbb{R} \cdot Y$. Since $[X, Y]=Y$, it follows that \mathfrak{h} is an ideal. Furthermore, for $g=\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)$,

$$
\operatorname{Ad}(g)\left(\begin{array}{cc}
s & t \\
0 & 0
\end{array}\right)=g\left(\begin{array}{cc}
s & t \\
0 & 0
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
s & a t-b s \\
0 & 0
\end{array}\right)
$$

Therefore, since the image differs from the input by an element of $Y \overline{\operatorname{Ad}}(g)=\operatorname{Id}$ for all g. Since G is center-free, Ad is faithful.

Problem 2. If V is a vector space of dimension n and $\omega \in \Lambda^{k}(V)$ is an alternating k-multilinear function and $v \in V$, let $\iota_{v} \omega \in \Lambda^{k-1}(V)$ be the functional $\left(w_{1}, \ldots, w_{k-1}\right) \mapsto \omega\left(v, w_{1}, \ldots, w_{k-1}\right)$. Let $\operatorname{ker} \omega=\left\{v \in V: \iota_{v} \omega=0\right\}$.
(a) Show that $\operatorname{ker} \omega$ is a subspace of V.
(b) Prove or find a counterexample: for a fixed $v, \iota_{v}: \Lambda^{2}(V) \rightarrow \Lambda^{1}(V)$ is never onto.
(c) Prove or find a counterexample: if $W \subset \operatorname{ker} \omega$, then ω induces a well defined alternating k multilinear function on V / W.

Solution.
(a) Let $v_{1}, v_{2} \in \operatorname{ker} \omega$. Then for every $\left(w_{1}, \ldots, w_{k-1}\right) \in V^{k-1}$,

$$
\begin{aligned}
\iota_{v_{1}+c v_{2}} \omega\left(w_{1}, \ldots, w_{k-1}\right) & =\omega\left(v_{1}+c v_{2}, w_{1}, \ldots, w_{k-1}\right) \\
& =\omega\left(v_{1}, w_{1}, \ldots, w_{k-1}\right)+c \omega\left(v_{2}, w_{1}, \ldots, w_{k-1}\right) \\
& =0+c \cdot 0 \\
& =0
\end{aligned}
$$

Hence, $\operatorname{ker} \omega$ is a subspace of V.
(b) This is true. Indeed, fix a v, and notice that for any $\omega \in \Lambda^{2}(V), \iota_{v} \omega(v)=\omega(v, v)=0$. In particular, $v \in \operatorname{ker} \iota_{v} \omega$, so any $\theta \in \Lambda^{1}(V)=V^{*}$ such that $\theta(v)=1$ cannot be in the image of ι_{v}.
(c) This is true. We define $\bar{\omega} \in \Lambda^{k}(V / W)$ by

$$
\bar{\omega}\left(v_{1}+W, \ldots, v_{k}+W\right)=\omega\left(v_{1}, \ldots, v_{k}\right)
$$

To see that this is well-defined, it suffices to show that for any $\left(w_{1}, \ldots, w_{k}\right) \in W^{k}, \omega\left(v_{1}+\right.$ $\left.w_{1}, \ldots, v_{k}+w_{k}\right)=\omega\left(v_{1}, \ldots, v_{k}\right)$. Define $z_{i, 0}=v_{i}$ and $z_{i, 1}=w_{i}$, so that

$$
\omega\left(v_{1}+w_{1}, \ldots, v_{k}+w_{k}\right)=\sum_{\sigma \in\{0,1\}^{k}} \omega\left(z_{1, \sigma_{1}}, \ldots, z_{k, \sigma_{k}}\right)
$$

Unless $\sigma=(0, \ldots, 0)$, at least one of the terms $x_{i, \sigma_{i}}$ is equal to w_{i}. Since $w_{i} \in W \subset \operatorname{ker} \omega$, using the antisymmetry of ω, it follows that the term vanishes. Hence the only term which survives is the $\sigma=(0, \ldots, 0)$ term. Hence,

$$
\omega\left(v_{1}+w_{1}, \ldots, v_{k}+w_{k}\right)=\omega\left(v_{1}, \ldots, v_{k}\right)
$$

and $\bar{\omega}$ is well-defined on V / W.

Problem 3. Let V be an n-dimensional vector space and $\omega \in \Lambda^{k}(V)$. If $W \subset V$ is a vector subspace, let $\pi_{W}: \Lambda^{k}(V) \rightarrow \Lambda^{k}(W)$ denote the restriction map, $\pi_{W}(\alpha)=\left.\alpha\right|_{W}$.
(a) Show that π_{W} is linear and onto. Use this to compute $\operatorname{dim}\left(\operatorname{ker} \pi_{W}\right)$.
(b) Find a basis for $\operatorname{ker} \pi_{W}$ when $V=\mathbb{R}^{5}, W=\mathbb{R}^{3} \times\{0\}$ and $k=2$.

Solution.
(a) Linearity follows immediately, since $\pi_{W}(\alpha+c \beta)(w)=\left.(\alpha+c \beta)\right|_{W}\left(w_{1}, \ldots, w_{k}\right)=\alpha\left(w_{1}, \ldots, w_{k}\right)+$ $c \beta\left(w_{1}, \ldots, w_{k}\right)=\pi_{W}(\alpha)\left(w_{1}, \ldots, w_{k}\right)+c \pi_{W}(\beta)\left(w_{1}, \ldots, w_{k}\right)$. To see that it is onto, choose a subspace $W^{\prime} \subset V$ such that $V=W \oplus W^{\prime}$, and $p: V \rightarrow W$ be the corresponding linear projection
sending $w+w^{\prime} \mapsto w$. If $\omega \in \Lambda^{k}(W)$, define $\tilde{\omega} \in \Lambda^{k}(V)$ by $\tilde{\omega}\left(v_{1}, \ldots, v_{k}\right)=\omega\left(p\left(v_{1}\right), \ldots, p\left(v_{k}\right)\right)$ (ie, $\tilde{\omega}=p^{*} \omega$). It is clear that $\pi_{W} \tilde{\omega}=\omega$, so π_{W} is onto.
(b) A basis can be constructed as follows:
$\left\{d x_{1} \wedge d x_{4}, d x_{2} \wedge d x_{4}, d x_{3} \wedge d x_{4}, d x_{1} \wedge d x_{5}, d x_{2} \wedge d x_{5}, d x_{3} \wedge d x_{5}, d x_{4} \wedge d x_{5}\right\}$
Indeed, these are $7=\binom{5}{2}-\binom{3}{2}$ linearly independent elements of $\Lambda^{2}\left(\mathbb{R}^{5}\right)$, and each of them becomes 0 on \mathbb{R}^{3} since all of them involve at least one of $d x_{4}$ or $d x_{5}$, which evaluate to 0 on \mathbb{R}^{3}.

